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I. INTRODUCTION

The mechanical response of gun propellant to high rate deformation plays a critical role in
the performance of guns and in the violence of the response of the propellant to vulnerability threats.
However, unlike engineering materials, which have most of their critical characterizations per-
formed within a range of state from stress-free up to conditions of failure, propellant performance
is most affected by mechanical response only after failure has occurred. Indeed, the changes in
propellant dimensions, under ideal firing conditions where no failure occurs, have been shown, using
ballistic code analysis, to have almost no effect on gun performance’'. Propellant performance within
an established charge depends on the rate of generation of gases through combustion (mass
generation rate). This mass generation rate of the propellant depends on its burning rate, density, and
the total surface area undergoing combustion. This relationship can be expressed by the following:

dm/dt = prA 9))

where dm/dt is the mass generation rate, p is the mass density, r is the pressure dependent burning
rate, and A is the exposed surface area. The variable critically influenced by the mechanical response
is A. The purpose of this study, then, is to help characterize the propellant susceptibility to fracture
which can be evaluated by measuring changes in the propellant mechanical response. If the propel-
lant is properly characterized, this susceptibility can be compared to acceptable performers or used
to point out response characteristics that need to be changed to enhance performance.

Until propellant failure conditions exist within the gun, A is a well behaved parameter. Un-
programmed generation of surface area can come from several sources. If individual grains are
projected against interior surfaces, such as cartridge case walls, the projectile base, or protruding
projectile fins, single grain impactresults. The amount of fracture generated surface area will depend
on factors such as the impact velocity, orientation, geometry and temperature of the grain. Grain-
grain interaction is also possible and has been described as an intergranular stress wave propagating
through the bed. If this stress state exceeds critical limits, fracture surface area will be generated. A
third failure mechanism results when the pressure differences between the gun chamber and the
perforation within the grain exceed critical values. This results in the grain or stick bursting or
collapsing, and unprogrammed surface area being added during the combustion process.

Until recently, only low rate (static to strain rates of 1/s), low pressure (atmospheric)
mechanical response measurements were made on these materials. Since most propellants are
polymeric systems that may or may not be filled, the response is sensitive to the rate of testing. Strain
rates experienced within the ballistic environment are thought to range from 10 to 500/s and may
extend to as high as 10,000/s under certain conditions. Intermediate rate (100 to 300/s) testing has
been performed routinely at the Ballistic Research Laboratory for the past five years. Much has been
learned about the fracture response of propellants at these rates, and these findings have beenreported
in the literature™**5, Response measurements at rates greater than these have been performed at
Lawrence Livermore National Laboratory by Costantino and Ornellas®’. The LLNL results are
provided in this report for comparison.
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Figure 1. Comparison of the Pressure-Strain Rate Regime of Ballistic Interest
and the Capability of Measurement Devices

A comparison between the pressure-strain rate range of ballistic interest and the range over
which testing is possible is illustrated in Figure 1. It can be seen that some encroachments into the
operating regime of the gun (shaded region) have been made. The darker shaded region represents
conditions early in the ballistic cycle, and is considered critical because any mechanical failure that
produces significant increases in mass generation will have the potential of generating severe adverse
effects on the remainder of the ballistic cycle. A large section of this critical gun regime can be
investigated using a High Pressure Hopkinson Split Bar (HPHSB). This served as an impetus for the
development of such a device.

The Hopkinson Split Bar (HSB) has long been a useful tool to explore the high rate (500 to
10,000/s) mechanical response of materials. This technique has been successfully applied to a
variety of materials including gun propellants for the evaluation of mechanical and fracture response
at very high strain rates. The HSB was constructed at BRL to determine the propellant response at
high strain rates, and as the first effort in the construction of a high pressure variation to explore the
critical portion of the gun pressure-rate regime, indicated in Figure 1. A description of the HSB and
its operation will be outlined. Earlier results from tests conducted during the construction of this
device were reported in Reference 8. The results of the most recent experiments performed on M30,
JA2 and XM39 propellants are presented here.

II. THEORY OF OPERATION

There are many sources that provide a detailed presentation of the theory of operation of the
HSBY011.13 and the reader is referred to these for more specific information. However, a general
description is provided here to facilitate understanding of the bar for those unfamiliar with the device.

The HSB provides a means by which high rate deformation can be applied to a specimen, and
the mechanical response of the material can be measured. The device consists of a projectile launcher,
a striker projectile and a pair of bars, the input bar and output bar, as illustrated in Figure 2. In
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Figure 2. Schematic Diagram of the Gas Gun and the Hopkinson Split Bar

operation, a stress pulse passes through the input bar and deforms the specimen which is located
between bars. Asdeformation occurs the specimen stress response to the deformation is transmitted
to and proceeds along the outputbar. The reflected stress wave from the input bar-specimen interface
characterizes the interaction between the this bar and specimen, and determines the specimen defor-
mation. The output bar carries the stress pulse corresponding 1o this deformation and if the
assumption of mechanical equilibrium of the specimen is made, then the specimen stress and strain
can be extracted from these two pulses.

This process isillustrated in Figure 3. The striker impacts the input bur which initiates a stress
pulse in that bar. The duration of the pulse is dependent on the length of the striker. The magnitude
of the stress pulse is determined by the impact velocity of the striker and the mechanical impedance
match between the strikerand input bar. To facilitate a good mechanicalimpedance match, the striker
and input bar are often made of the same material and have similar diameters. As this pulse passes
the strain gages, mounted on opposite sides of the input bar, the first strain pulse is measured. In this
example the stress begins to pass the gage at about 0.05 ms. At 0.15 ms the pulse begins to deform
the specimen and a reflected tensile wave starts back toward the input bar gage, while a transmitted
compressive pulse begins:n the outputbar. Atabout0.3 ms the reflected and transmitted pulses begin
to be detected by their respective gages. Finally at about 0.4 ms the end of these pulses passes the
gagesand expenimentisover. However, reflection will zontinue to occur at the ends of each bar. Note
that the length of the striker is limited by the requirement that the initial and reflected pulses must
not be interfering at the strain gage location. Thus the maximum length for a striker made of the same
material as the bar is one-half the input bar length.

Asmentioned above, the strain in the bars was measured using two active gages. These gages
were located on opposite sides of a full bridge circuit to cancel any bending that may have been
induced by an off-axis striker impact. Figure 4 shows a schematic diagram of this circuit. The re-
lationships below were used to calculate the specimen response. The reflected input bar strain, €,
was calculated using the following equation':




Quzput Signa!

N Lepur Sigwl

Raw Input & Qutput Signal

o]
Input Puise

Figure 3. The Raw Signal Output from
the HSB and the Corresponding
Stress Pulses in the Bars

To Ampitfier

Figure 4. Schematic Diagram of the
Strain Gage Bridge Circuit Used
on the Input and Output Bars

where F is the gage factor, V  in the signal
voltage, and V is the bridge excitation voltage.
The third term on the right hand side of the
equation is a nonlinear correction factor for the
circuit. The specimen strain, £, attime tis given
by the following relationship'™:

{
2
21C,

T Jerdt

]

g = - 3)

where C is the sound speed within the input bar,
and L is the length of the specimen. The stress
within the specimen, o is determined by:

A

s A_S

where A is the cross sectional area of the output
bar, A, 1s the cross sectional area of the specimen,
E is the modulus of the output bar, and g is the
strain transmitted to the output bar, which was
calculated from an equation similar to Equation
2. This setof equations was used to determine the
stress and strain response of the specimen to the
high rate deformation.

IlI. APPARATUS AND PROCEDURE
A. The Apparatus

The Hopkinson Split Bar used in these
tests, illustrated in Figure 2, consists of elastic
input and output bars of equal length (120.0 cm)
and diameter (1.25 cm). The striker (23.0cmin
length) was accelerated to impact velocities by
means of a gas gun. The bars and striker were
made of aluminum to provide a good impedance
match beween specimen and the bars.  The
1000-ohm strain gages were mounted on oppo-
site sides of each bar and provided the input to
conditicing amplifiers. The two-channel out-
put from the conditioning amplifiers was re-
corded using two 2.5 MHz ampiificrs.




B. Specimen Preparation and Conditioning

Right circular cvlinder specimens of M30, JA2, and XM39 gun propellant were prepared by
cutting cither propellant grains (7-multiperforated) or sclid rods with a diamond saw so thateach end

_was flat to within 10 um, parallel to the opposite end to within 0.25°, and perpendicular to the axis

of the cylinder to within 0.5°. The specimens had a length to diameter ratio of 1 + 0.05, except in
several cases where higher strain rates were desired. In those cases the ratio ranged from about 0.6
10 0.2. All tests were conducted at ambient temperatures (19-24°C) and pressures (0.1 MPa). The
composition of these propellants is given in Table 1.

C. The Procedure

Preparation of the Hopkinson Split Bar is necessary before measurements can be made. The
bar must be aligned so that the striker, input and output bars are coaxial. The ends of bars must be
mated to ensure that pulse asymmetries generated by the impact are kept to a minimum. A mismatch
between any two components will produce signal noise. Ideally, the input pulse should be a square
wave. The le ;s square the wave is the less aligned or mated the bars are.

Calibration shots were made with no sample present to check striker-bar alignment, and the
transmittal of the pulse across the input-output bar interface. If all elements were correctly aligned,
a square pulse would be generated and transmttted to the output bar with no reflection at thebar
interface. The pulserise and fall should be rapid and clean with no overshoot or rounded edge. When
the calibration shots were found to be acceptabie, specimens were introduced into the system.

The ends of the specimen were coated with a very thin layer of molybdenum disulfide paste
to reduce shear friction between the bar and specimen. The specimen was then placed between the
input and ouuput bars so that the axis of the specimen was aligned with the bar axes. A striker velocity
was selected so that strain rates on the order of 1000/s were achieved, except in the thin sample cases
where rates of about 10,000/s were desired. The gas gun reservoir was charged with nitrogen and
rcleased remotely to initiate striker acceleration.

Table 1. Percent Composition of JA2, M30, and XM39 Gun Propellants

mponen Jponen
JA2  M30 XM39
Nitrocellulose 59 28 RDX (Ground) 76.0
NC Nitration Level 13.0 126 Celluiose Acetate Butyrate  12.0
Nitroglycerin 15 22 Acetyl Triethyl Citrate 7.6
Nitroguanidine 0 48 Nitrocellulose 4.0
Ethyl Centralite 0 2 NC Nitration Level 12.6

Dicthylene Glycol Dinitrate 25 J Ethyi Centralite 0.4
Akardit11 i 0




Table 2. Key to the Parameters Reported in Figures 5 Through 8.

L = Specimen Length 38 = Stressat3 % S - a
D = Specimen Diameter .58 = Stress at 5 % Strain
XA = Specimen X-Sec. Area Sy = Strain at Yield Stress
T = Specimen Temperature SR = Strain Rate
P = Specimen Confining E = Compressive Modulus
Pressure EF = Failure Modulus
YS = Yield Stress T = Toughness at Yield

The data acquisitionrate was 400 ns per point (2.5 MHz), which provided a sufficient number
of points for analysis. Since the stress and strain information is recorded independently and away
from the site of the specimen, the onset of stress and strain must be matched or shifted intime to agree.
This was done during the data reduction in a manner such that the onset of the calculated stress curve
was shifted to match the onset of the calculated strain curve. Scanning Electron Microscopy (SEM)
was performed on tested specimens to explain some response features, which is discussed below.

Seven-multiperforated specimens of M30, JA2, and XM39 propellant were tested as well as
solid stick M30. Specimens were prepared with length to diameterratios of 1 and thinner specimens
(0.6 >L/D >(.2) of each propellant were prepared to explore higher rate deformation response. Five
specimens were tested under each condition.

1V. RESULTS AND DISCUSSION

Typical results for specimens with a length t> diameter ratio of 1 are given in Figures §
through 7. Figure S also indicates the meaning of some of the parameters within the figures. These
parameters are described n.ore fully in Reference 2. Figurcs 6 and 7 include curves from earlier,
lowgr rate t~- 1g for comparison. A key to the symbols is given in Table 2.

From these curves three different responses can be seen. M30 was very stiff before yielding
atastress significantly below expected, and then became much softer as deformation continued. This
low yielding stress was unexpected because in lower rate tests using a Drop Weight Mechanical
Propenties Tester (DWMPT)?  higher yield stresses were observed. Subsequent testing was
performed on multiperforated specimens and will be discussed below. JAZ acted in a manner similar
o loweriate tests, Itdeformedin an apparentelastic fasnion until yield and then continued to undergo
plastic deformation at that yield stress. The yield stress anda modulus were higher than atlower rates,
as expected, and the strain at yield was lower, indicating a trend toward more brittle response than
al lower rates. XM39 also responded like it had previously in lower rate DWMPT tests. ‘The yield
stresses were about the same as those of the lower rate tests, but the modulus increased and the strain
alyiclddecreased, indicating amore brittle response in these tests. Afteryielding the stressdecreased
with continued deformation, indicating a loss of strength due to fracture. Table 3 lists the average
values obtained from these tests and the corresponding values obtained earlier from DWMPT tests.
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Table 3. Comparison of Results From the Hopkinson Split Bar
and Drop Weight Mechanical Properties Tests

" Propellant  Strain Rate Yield Stress  Yield Strain ~ Modulus
(1/s) (MPa) (%) (GPa)
L/D= ]
M30
HSB (STK) 1100 58.7 0.67 11.6
HSB (7MP) 1620 68.9 1.50 5.4
DWMPT* 247 81.0 3.94 3.0
JA2 -
HSB (7MP) 2070 297 1.67 2.25
DWMPT 208 20.5 3558 0.95
XM3ig
HSB (7MP) 2270 83.7 1.60 6.9
DWMPT 346 §2.0 3.21 3.9
M30 2220 71.5 1.7% 5.35
JA2 3080 324 2.26 1.71
L/D<0.S5 (Individual Tests All 7MP)
M30 L/D
0.338 6840 139 6.37 2.59
0.201 11300 147 10.4 1.65
JA2 L/D
0.212 9450 50.0 7.11 0.835
0.180 11080 47.5 4.25 1.29
XM39 L/D
0.372 7650 114 5.65 2.43

* Al DWMPT Specimens are 7MP.

The significant differences noted above in the M30 response were onginally thought to be
the result of dewetting of the propellant binder (nitrocellulose) and crystal filler (nitroguanidine).
Virgin and tested specimens were examined using a Scanning Electron Microscope for evidence of
binder/filler separation. No indication of this was found, but even if this was known to occur,
detection would bedifficult. Thisis due tothe SEM specimen preparation procedure, cold fracturing,
which is required to obsenve the specimen interior. It could not be determined if the separation of

10
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binder andfiller wasintrinsic to the specimen or an artifact of preparation. However, while observing
the specimens with the SEM, intrinsic voids were observed on the ends of tested specimens. These
voids, shown in Figure 8, were about 5 um in diameter and a significant number were connected by
cracks thatran through 5to 20 of these voids. Itis believed that the difference in response if the M30
is due, at least in part, to the presence of these and possibly other defects.

Multiperforated M30 was prepared and tested. A typical response curve along with a
DWMPT curve is shown in Figure 9. This propellant is known 1o be free of voids and shows a
response closer to what would be expected. The modulus is higher and even though yielding first
occurs at a low stress, continued deformation showed no sigrificant loss of strength. When
significant yielding occurs at greater deformation, it occurs at stresses more in line with the expected
values. The possibility of early separation of binder and filler still exists. However, the grossly
deviant behaviorobservedin earlier tests has disappeared. The propella.-t had a higher modulus and
appears to fail at a higher stress and lower strain, which was a shift toward more brittle behavior.

The response of specimens at L/D ratios less than 1 indicated that shear failure was occurring
at lower strain. For these gun propellants it has been demonstrated that, for specimens with equal
L/D ratios, as strain rate increases the yield stress, and modulus increase while the yicld strain
generally decreases. In these tests with L/D < 1, the stress and strain at yield increased, and the
modulus decreased as L/D decreased in spite of the increase in strain rate. This was in conflict with
previously observed results. The most likely explanation is a change of failure mode due to the 1./
D change.

11
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SEM micrographs were used to investigate the tested specimens. M30 and JA2 speci.mens
with L/D > 0.3 remained intact with no visible fractures, and there was permanent deformation of
about 20 percent. The XM39 specimens fractured into small shards. Itis difficult to know when this
occurred. The experiment ended as soon as the initial input pulse is fully reflected atthe bar-specimen
interface. Therefore it is not necessary for break-up of the specimen to be indicated by the signal
although some fracture was indicated by the stress vs strain plots. The sample could be further
damaged by reflected pulses as the bar moves after measurement is over. The thin specimens (L/D
<0.3) suffered severe damage. JA2 specimens were in one piece, but were flattened with a 70 percent
increase in diameter. There were also indications of brittle fracture, evidenced by cracks radiating
from the perforations, as shown in Figure 10a. Most of the M30 specimens remained together, but
they were badly fractured and had pieces missing. Micrographs, such as shown in Figure 10b,
indicated much material flow as well as the occurrence of fracture. The XM39 specimens could not
be found. Very small pieces of the specimen remained in the vicinity of the test site, and individual
RDX Particles (5-10 um) dusted the area. These particles were observed on micrographs of other
specimens that were kept in the vicinity during the XM39 testing (see Figure 10a). All these
observations are consistent with the measured results.

These results compare favorably with data generated at Lawrence Livermore National
Laboratory%” (LLNL). Figure 11 compares LLNL results with earlier DWMPT and the current HSB
tests results. The LLNL specimens were of the same composition as the BRL specimens, but lot
numbers and L/D ratios (LLNL used L/D ratio of 2) were different. However, the trends and
magnitudes of the stress at 3-percent strain are comparable. Differences can be attributed to the
specimen differences noted above. Figure 11b shows close agreement of the high rate modulus
values for JA2, but the modulus obtained from the DWMPT data appears to be much lower than
would be predicted by the LLNL data. However, another point of view can be taken. The lower rate
LLNL data and the DWMPT data form a better fitting line than when all of the LLNL data is
considered. The two highest modulus values are obtained by the same method (HSB). This may
indicate that the measured modulus is influenced somewhat by the technique, or that a transition
occurs somewhere above strain rates of about 300/s. The existence of this transition can be
determined by lowering the impact velocity of the striker to obtain lower strain rates.

V. CONCLUSIONS

Hopkinson Split Bar data was collected and analyzed for three gun propellants, M30, JA2,
and XM39. This device was constructed to extend the strain rate range of measurements beyond the
300/s limit currently available with the Drop Weight Mechanical Properties Test. Strain rates
ranging from 1100 to 2270/s were obtained for specimens with a specimen length to diameter ratio
of one. Testresults indicated that at these higherrates yield stresses increased for M30 and JA2, but
remained about the same for XM39. The initial moduli increased and the yield strains decreased for
all propellants. The response at higher rates produced more fracture than tests at lower rates.
However, the strength of the material before fracture appeared to increase with rate. These results
agree with the results of similar tests conducted at Lawrence Livermore National Laboratory for JA2
and XM39 propellants.
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Figure 10b. M30 Specimen Showing Fracture and Plastic Flow (50X)

Figure 10. SEM Micrograph of Very Thin HSB Specimens
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Figure 11. Comparison of BRL Results with LLNL
Results (Solid Lines Represent the Best Fit to LLNL
Data Points, the Dashed Line Represents the
Best Fit to the Lower Rate Modulus Values)

Microporosity discovered in
tested speciimens appears to be re-
sponsible for the very high initial
modulus values, the very low yield
strain values, and the very weak re-
sponse after yield obtained for M30
solid stick propellant. It was thought
that the porosity precipitated iocal
shear failure at low strain, which
continued with deformation. Subse-
quent testing using specimens with-
out voids provided a response more
in line with other results. There was
still some indication in these later
tests that part of the weaker response
could be due to binder-filler dewet-
ting occurring within M30 at these
rates, although no morphalogy dif-
fe-cnces were ebserved when micro-
graphs of iested and untested speci-
mens were compared. Fintherinves-
tigation is indicated.

Spccimen length to diameter
ratios were demonstrated to affect
measurcd results. When the L/Dratio
was reduced to increasc the strain
rate, rates of over 10,000/s were ob-
tained. Kesultsshe - ed thatthe stress
increased, as expected, but the strain
at yield increased and the modulus
decreased. The later two observa-
tions run contrary to trends observed
with specimens of constant L/D ra-
tios tested at various rates. It was
concluded that the shortened speci-
mens tnduce earlier shear failure
which produczd these results. The
HSB results from LLNL, where the
L/Dratio was 2, seem to indicate that

thiseffectis not so pronounced when L/D is increased from 1 to 2. However, since different lots and
specimen configurations were used (LLNL used only solid stick) the effect is not clearly demon-

strated.
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Figure 12. Schematic Diagram of the High Prescure Hopkinsen Split Bar
VI. FUTURE EFFORTS

The Hopkinsen Split Bar used here was designed to be part of a high pressure system that
woild permit high rate response measurements to be performed from ambient pressures up to 200
MPa. A schematic illustration of the assembled device is shown in Figure 12. The design and
operation 1s fully cxplained in Reference §, so only a brief explanation of the device will be provided
here. The bar will be contained within a ! -inch smooth bore Mann barrel which is capped at both
ends. One end contains an aluminium stress transmission bar which will deliver the stress pulse from
the striker bar. The pulse is then transmitted into the high pressure confinement and delivered to the
input bar. The experiment then proceeds as 1t does at atmospheric pressures. Tie signals from the
strain gages, and other electronic information are sent by way of a special feed-through installed in
the other cap that permits up to 16 signalsto be delivered to the outside of the vessel. The pressurizing
medium is gas, so volume fillers encircle the bar to reduce the free volume. The systemis now ready
to be pressure tested. When in operation, a large portion of the area indicated in Figure 1 as the
“Critical Gun Regime” will be open for investigation. Plans are to conduct experiments on the
propellants tested here in the near future, now that the HSB has been shown to provide satisfactory
results,
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